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Abstract8

Consider an additive form F (x) = a1x
d
1 +a2x

d
2 + · · ·+asx

d
s whose coefficients

are 2-adic integers. In this article we give an exact formula, in terms of d, for
the smallest number of variables which guarantees that F has a nontrivial
zero in the 2-adic integers regardless of the values of the coefficients.
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1. Introduction11

In this article, we study conditions under which diagonal forms have non-12

trivial 2-adic zeros. Suppose that F (x) is a polynomial of the form13

F (x) = a1x
d
1 + a2x

d
2 + · · ·+ asx

d
s (1)

with all coefficients in the field Q2 of 2-adic numbers. We wish to find a14

condition on the number of variables which guarantees that regardless of the15

coefficients, the equation F (x) = 0 has a solution where all of the variables16

are in Q2 and at least one variable is nonzero.17

18

One of the earliest results about additive forms over p-adic fields was due19

to Brauer [1], who showed that if the coefficients of F in (1) are rational in-20

tegers, then given the degree d of the form, there exists a number Γ∗(d) such21

that if s ≥ Γ∗(d), then the form F (x) has nontrivial zeros in p-adic integers22

for all primes p, regardless of the coefficients of F . Brauer’s result is actually23

stronger than this, as it applies to systems of forms, and the forms are only24
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required to be homogeneous, not necessarily additive. However, Brauer’s pa-25

per does not give either a formula or an upper bound for Γ∗(d).26

27

The first quantitative result in this direction was by Davenport & Lewis28

[2], who showed that Γ∗(d) ≤ d2 + 1 and that equality holds whenever d+ 129

is prime. Other results along these lines for either single forms or systems30

of forms have been given by Brüdern & Godinho [3, 4], Davenport & Lewis31

[5, 6], Dodson [7, 8], Knapp [9, 10], Low, Pitman & Wolff [11], and Wooley32

[12], among others. The majority of results of this type have been proven by33

first fixing the prime p and finding an upper bound for Γ∗p(d), which is defined34

in the same way as Γ∗(d) except that one only considers p-adic solubility for35

the specified prime, and allows the coefficients to be any p-adic integers. (It36

turns out that for a specified prime p, the situation with rational integral37

coefficients and the situation with p-adic integral coefficients are equivalent,38

so there is no loss here. The coefficients were only originally restricted to be39

rational integers so that the equation would be defined over all of the fields40

Qp.) Once the bound for Γ∗p(d) is established, one can find the maximum of41

this bound over all primes, obtaining a bound on Γ∗(d). Given this method,42

it seems natural to study the functions Γ∗p(d) for specific values of p, and in43

this article we focus our attention on the situation when p = 2.44

45

When calculating values of Γ∗(d), one finds that they are very irregular.46

For example, we have Γ∗(6) = 37 [2], Γ∗(7) = 22 [7, 13, 14, all independently],47

Γ∗(8) = 39 [15], Γ∗(9) = 37 [7, 14, independently], and Γ∗(10) = 101 [2]. In48

fact, no explicit formula is known which gives the value of Γ∗(d) for all values49

of d. Therefore it is perhaps surprising that it is possible to give an explicit50

formula which yields the exact value of Γ∗2(d) for all degrees d.51

Theorem 1.1. Write d = 2τd0, where d0 is an odd integer, and define the52

number γ by53

γ = γ(d) =

{
1 if τ = 0;

τ + 2 if τ > 0.

Further, write d = γq + r, where q and r are integers with 0 ≤ r ≤ γ − 1.54

Then we have55

Γ∗2(d) =

{
5 if d = 2;

(2γ − 1) q + 2r otherwise.
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It is not hard to show that Γ∗2(d) must be at least as large as the bound56

in the theorem. Suppose first that d 6= 2. By the theory of d-th power57

residues modulo powers of 2, one can see that if 2 - x, then xd ≡ 1 (mod 2γ).58

Consider the form59

F =
2γ−1∑
i=1

xdi + 2γ ·
2·(2γ−1)∑

i=(2γ−1)+1

xdi + · · ·

+ 2(q−1)γ ·
q(2γ−1)∑

i=(q−1)(2γ−1)+1

xdi + 2qγ ·
q(2γ−1)+2r−1∑
i=q(2γ−1)+1

xdi .

Since there are only 2γ − 1 variables with coefficients not divisible by 2γ, the60

only way to have F ≡ 0 (mod 2γ) is to have each of x0, . . . , x2γ−1 divisible61

by 2. Similarly, one can see that in any nontrivial 2-adic zero, all of the62

variables must be divisible by 2. Because the form is homogeneous, we could63

get another zero by dividing each variable by 2. Doing this repeatedly would64

eventually lead to a 2-adic integral solution with at least one variable not65

divisible by 2, yielding a contradiction.66

67

If d = 2, then we can show that Γ∗2(2) ≥ 5 by noting that the congruence68

x21 +x22 +x23 +x24 ≡ 0 (mod 8) has no solutions with any of the xi odd. In the69

same way as above, we can then show that the equation x21 +x22 +x23 +x24 = 070

has no nontrivial 2-adic integral solutions. Moreover, since it is well-known71

that Γ∗(2) = 5 (for example since 2 + 1 is prime), we must have Γ∗2(2) ≤ 5.72

Together, these inequalities show that Γ∗2(2) = 5. When we consider Theo-73

rem 1.1 in the remainder of this article, we will assume that d 6= 2.74

75

As an interesting consequence of this theorem, we have the following76

corollary.77

Corollary 1.2. We have Γ∗(32) = 524.78

This is immediate from results in [16]. In that article, we show that Γ∗p(32) ≤79

513 for all p > 2. Since Theorem 1.1 gives Γ∗2(32) = 524, this completes the80

proof.81

82

It is interesting to note in this corollary that we have Γ∗(32) 6≡ 1 (mod 32).83

For almost all of the known values of Γ∗(d), it is the case that Γ∗(d) ≡ 184
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(mod d), and it had been conjectured at one point that this congruence must85

hold for all d. Bovey [15] disproved this when he showed that Γ∗(8) = 39.86

This example is only the second known value of d for which the congruence87

fails.188

89

Before ending this section, we mention that the techniques used in the90

proof can be used to prove a theorem in the field of graph pebbling. Suppose91

that G is a directed cycle graph with n vertices such that all of the edges point92

clockwise, and that a positive integer d < n is given. Using the techniques in93

this article, we can determine the minimal number s such that if s pebbles94

are placed on the graph, in any configuration, then there is a sequence of95

pebbling moves which moves a pebble at least d vertices away from where it96

started. In fact, the bound itself is entirely analogous to the bound in this97

article. The interested reader may refer to [18], which may be thought of as98

a companion paper to this one, for details.99

2. Contractions100

In this section, we define the notion of a contraction, which will be useful101

when proving Theorem 1.1. First, we note that in (1), we can write102

F = F0 + 2F1 + 22F2 + 23F3 + · · · ,

where each variable in each of the forms F0, F1, . . . has a coefficient not di-103

visible by 2 and each variable in F is in exactly one of the Fi. If a variable104

x is included in the form Fi, then we say that x is at level i in F . Further,105

if i ≥ d, then by making a change of variables of the form x′ = 2x, we can106

lower the level of x to i − d. Moreover, the form that results from making107

this change of variables has nontrivial 2-adic integral zeros if and only if F108

does. Hence we may assume without loss of generality that every variable in109

F has level at most d− 1.110

111

We can now define contractions of variables. Suppose that F is as in (1),112

that we have some variables in F , say x1, . . . , xt for example, and that these113

1In unpublished work, Jessica Jennings (an undergraduate student at Loyola University
Maryland at the time) has shown that Γ∗(54) = 1049, giving a third example. This
example was recently discovered independently by Diane Soares Veras in her Ph.D. thesis
[17].
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variables are at (possibly different) levels at most j−1. Suppose further that114

we can find numbers b1, . . . , bt such that115

a1b
d
1 + · · ·+ atb

d
t = 2jm,

with m odd. Then setting xi = biT for 1 ≤ i ≤ t yields a new variable T116

at level j with coefficient 2jm. This operation is called a contraction of117

variables to a new variable at level j.118

119

Along with contractions, our main tool for finding nontrivial 2-adic zeros120

of (1) is the following version of Hensel’s Lemma.121

Lemma 2.1. Let F be a form as in (1). Write d = 2τd0, with d0 odd, and122

let γ be defined as in the statement of Theorem 1.1. Suppose that for some123

positive integer n, we can find a vector z such that124

F (z) ≡ 0 (mod pn+γ) (2)

and at least one variable at level n or below is odd. Then z can be lifted to a125

nontrivial 2-adic integral zero of (1).126

Combining our tools, suppose that for some n we can use contractions to127

construct a variable T at level n+γ or higher, and that in these contractions128

we use a variable that was originally at level n. Then by setting T = 1 and129

setting any variables not involved in the contractions equal to 0, the condi-130

tion (2) is satisfied, and Lemma 2.1 may be applied. Therefore, our goal in131

the proof is to show that we can “move” a variable up at least γ levels by132

using contractions.133

134

3. Preliminaries135

In this section, we give the preliminary lemmata needed to prove our136

formula for the value of Γ∗2(d). We begin with two straightforward lemmata137

which we will need to bound the number of variables at different levels.138

139

Lemma 3.1. Suppose that d, N , and a are positive integers such that N/d >140

21 − 1 = 1 and aN/d > 2a − 1. Then we must also have kN/d > 2k − 1141

whenever 2 ≤ k ≤ a− 1.142
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Proof. Let f(k) = N
d
k− 2k + 1. Then the lemma is true if we can prove that143

f(k) > 0 for 1 ≤ k ≤ a. By hypothesis, this is true for k = 1 and k = a.144

Considering k as a real variable, we have f ′(k) = N
d
− 2k ln 2. Clearly there145

is only one point k = k∗ such that f ′(k) = 0. Moreover, we have f ′(k) > 0146

for k < k∗ and f ′(k) < 0 for k > k∗. This implies that once f(k) begins147

decreasing, it can never increase again. If we were to have f(k) ≤ 0 for148

some k between 1 and a, then f(k) would have to decrease after k = 1 and149

then start increasing again to yield f(a) > 0. But this cannot happen. This150

completes the proof of the lemma.151

152

Lemma 3.2. Suppose that γ, q are positive integers with γ ≥ 3, that r is153

an integer with 0 ≤ r < γ, and set d = γq + r. Moreover, suppose that154

m0, . . . ,mγ−2 are integers such that155

m0 + · · ·+mk−1 ≥
k ((2γ − 1)q + 2r)

d

for 1 ≤ k ≤ γ − 1. Then we have156

m0 + · · ·+mk−1 > 2k − 1

for 1 ≤ k ≤ γ − 1.157

Proof. By Lemma 3.1 with N = (2γ − 1)q + 2r, it suffices to prove the158

conclusion for k = 1 and k = γ − 1. When k = 1, our hypothesis is that159

m0 ≥
(2γ − 1)q + 2r

γq + r
.

To see that this is greater than 1, we simply note that 2γ − 1 ≥ γ and 2r > r160

for all nonnegative integers γ and r. When k = γ − 1, we need to show that161

(γ − 1) ((2γ − 1)q + 2r)

d
> 2γ−1 − 1.

Some algebra shows that this is true if and only if we have162

2γ−1(γq − 2q − r) + (2r(γ − 1) + q + r) > 0. (3)

Clearly, the number 2r(γ − 1) + q + r is positive. Moreover, the number163

γq − 2q − r is nonnegative whenever r ≤ (γ − 2)q. If this is true, then (3)164
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is also true. Therefore, since we must have r ≤ γ − 1, the inequality (3) can165

only potentially fail to hold when (γ − 2)q < r ≤ γ − 1, which implies that166

q < 1 + 1
γ−2 . Hence the only potential problems arise when q = 1, in which167

case we must have r = γ − 1. In this case, (3) becomes168

2γ−1(γ − 2) + γ > 0,

which is clearly true since γ ≥ 3. This completes the proof of the lemma.169

170

Another key tool in the proof is the following combinatorial lemma due171

to Davenport & Lewis [2].172

Lemma 3.3. Let a0, a1, . . . , ad−1 be real numbers, and put aj+d = aj for all173

j. Let174

a0 + a1 + · · ·+ ad−1 = s.

Then there exists a number r such that175

ar + · · ·+ ar+t−1 ≥ ts/d for t = 1, . . . , d.

The next lemma is a special case of a lemma due to Davenport & Lewis176

[2], and shows that it suffices to study additive forms with certain additional177

properties. Part of this lemma formalizes our remarks at the beginning of178

Section 2, and part is a corollary of Lemma 3.3.179

Lemma 3.4. By a nonsingular change of variables of the form xi = lix
′
i,180

any additive form as in (1) can be transformed into one of the type181

F = F0 + 2F1 + · · ·+ 2d−1Fd−1,

where each Fi is an additive form in mi variables, and the variables in each182

Fi are distinct. Moreover, each variable in each Fi appears with a coefficient183

which is nonzero modulo 2, and for 1 ≤ i ≤ d, we have184

m0 +m1 + · · ·+mi−1 ≥ is/d.

Since making a nonsingular change of variables of this type does not change185

whether a form has rational zeros, we may assume in the proof of Theorem186

1.1 that F has the properties listed in this lemma.187

188

Our final Lemma in this section is due to Bovey [15].189
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Lemma 3.5. Let n ∈ Z+, and suppose that for i = 0, . . . , n, we have Fi =190 ∑mi
j=1 aijxij with all the aij odd and with

∑k−1
i=0 mi ≥ 2k for each k = 1, . . . , n.191

Then for any positive integer N > n, the form
∑n

i=0 2iFi represents at least192

min{
∑n

i=0mi, 2
N} different residue classes modulo 2N , where the xij ∈ {0, 1}193

and x0j = 1 for at least one j.194

4. Proof of the Theorem - The Easy Cases195

In this section, we prove Theorem 1.1 in the case where d is odd (so that196

γ = 1) and the case where d is even and γ|d. Note that the definition of γ is197

such that we never have γ = 2.198

Lemma 4.1. Suppose that d is odd. Then we have Γ∗2(d) = d + 1, as in199

Theorem 1.1.200

Proof. This lemma is a special case of [19, Lemma 10], and so we will only201

briefly sketch the proof. With d + 1 variables distributed between levels202

0, . . . , d − 1, there must be some level which contains two variables. These203

variables can be contracted to a higher level, which (since γ = 1) immediately204

leads to a 2-adic solution by Lemma 2.1. This shows that Γ∗2(d) ≤ d+ 1. By205

the remarks following the statement of Theorem 1.1, we know that Γ∗2(d) ≥206

d+ 1, which completes the proof of the lemma.207

208

Lemma 4.2. Suppose that d 6= 2 is even and write d = 2τd0, where d0209

is odd. Then γ = τ + 2. Suppose that γ|d, with d = γq. Then we have210

Γ∗2(d) = (2γ − 1)q + 1, as in Theorem 1.1.211

Proof. As above, we only need to show that this is an upper bound for Γ∗2(d).212

Hence we assume that there are exactly (2γ − 1)q + 1 variables in F . Write213

F in the form given in Lemma 3.4. We will show that it is always possible214

to find a solution of the congruence215

F ≡ 0 (mod 2γ) (4)

with at least one odd variable at level 0. As in Lemma 3.4, let mi be the216

number of variables at level i. Then by Lemma 3.5 (with n = τ + 1 and217

N = γ = τ + 2), we can find our desired solution if we can show that218

m0 + · · · + mk−1 ≥ 2k for 1 ≤ k ≤ γ. (We note as a subtle point that since219

τ + 1 ≤ d − 1, it is legitimate for us to consider variables at levels up to220

8



τ + 1.) In order to prove these inequalities, by Lemma 3.4 it is sufficient to221

show that222

k ((2γ − 1)q + 1)

γq
> 2k − 1 (5)

for 1 ≤ k ≤ γ. Further, we note that if we can prove that the k = 1 and k = γ223

cases of (5) hold, then Lemma 3.1 shows that the other cases of (5) also hold.224

225

The k = 1 case of (5) simply states that226

(2γ − 1)q + 1

γq
> 1,

and this is easily seen to be true since 2γ − 1 > γ for any integer γ ≥ 2. It is227

also trivial to see that the k = γ case holds, since then the left-hand side of228

the inequality (5) reduces to 2γ−1+ 1
q
. As stated above, Lemmas 3.1 and 3.5229

now show that we can find a solution of F ≡ 0 (mod 2γ) with at least one230

odd variable at level 0. This solution now lifts to a nontrivial 2-adic solution231

by Lemma 2.1.232

233

5. Completion of the Proof234

In this section, we complete the proof of Theorem 1.1. As above, it suffices235

to show that the formula in the theorem is an upper bound for Γ∗2(d). After236

the results of Section 4, we may assume that d 6= 2 is even (so that γ ≥ 3) and237

that r > 0. For convenience, in this section we will write everything in terms238

of τ rather than γ, keeping in mind that γ = τ + 2. Let s = (2τ+2− 1)q+ 2r.239

By Lemma 3.4, we may assume that we have m0 + · · · + mk−1 ≥ ks/d for240

1 ≤ k ≤ d.241

242

From this, Lemma 3.2 and the fact that the mi are integers show that243

m0 + · · ·+mk−1 ≥ 2k for 1 ≤ k ≤ τ + 1. If we additionally have m0 + · · ·+244

mτ+1 ≥ 2τ+2, then by Lemma 3.5 we can represent the zero residue modulo245

2τ+2 with at least one variable from F0 not equal to zero. Then Hensel’s246

Lemma guarantees a nontrivial p-adic zero of F , and we are done. Hence we247

may assume that m0 + · · ·+mτ+1 ≤ 2τ+2 − 1.248

249

Suppose that for some number t with 1 ≤ t ≤ q−1, we can find t pairwise250

disjoint sets of subscripts S1, . . . , St with the following properties:251
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1. Si ⊆ {0, 1, 2, . . . , d− 1} for each i,252

2. |Si| = τ + 2 for each i,253

3. the elements of each Si are consecutive integers si, si+1, . . . , si+ τ +1,254

4. for each i and each k with 1 ≤ k ≤ τ+1, we have msi + · · ·+msi+k−1 ≥255

2k,256

5. for each i, we have msi + · · ·+msi+τ+1 ≤ 2τ+2 − 1.257

By the previous paragraph, we may take S1 = {0, 1, . . . , τ + 1}, and so at258

least one such set exists. We now show that either we can find a nontriv-259

ial solution of F = 0 or else an additional set exists with the above properties.260

261

Consider the forms Fj (as defined in the statement of Lemma 3.4) where262

j 6∈ ∪Si. There are α = (τ + 2)(q − t) + r such forms, and they contain a263

total of at least (2τ+2 − 1) (q − t) + 2r variables. Suppose that these forms264

are Fi0 , . . . , Fiα , with 0 ≤ i0 < i1 < · · · < iα ≤ d− 1. By Lemma 3.3, we may265

relabel these forms as Fw0 , . . . , Fwα in such a way that266

1. the ordered tuple (w0, w1, . . . , wα) is a cyclic permutation of the tuple267

(i0, i1, . . . , iα), and268

2. for each k with 1 ≤ k ≤ α, we have269

mw0 + · · ·+mwk−1
≥ k ((2τ+2 − 1) (q − t) + 2r)

(τ + 2)(q − t) + r
.

By Lemma 3.2 and the fact that the mi are all integers, we have270

mw0 + · · ·+mwk−1
≥ 2k for 1 ≤ k ≤ τ + 1.

Now, suppose that the subscripts w0, . . . , wτ+1 are not consecutive numbers.271

Then there is a smallest number k ≤ τ such that wk = w0 + k, but wk+1 6=272

w0 + k+ 1. Then wk + 1 is the smallest element of one of the sets Si defined273

above. (If we have wk = d − 1, we may temporarily apply the change of274

variables x′ = x/p to all variables at levels 0, 1, . . . , τ + 1, bringing them to275

levels d, d+ 1, . . . , d+ τ + 1. Then we may temporarily consider s1 = d and276

S1 = {d, . . . , d+ τ + 1}.) That is, we have wk + 1 = si for some i. By Lemma277

3.5, we can solve the congruence278

2w0Fw0 + · · ·+ 2wkFwk ≡ 0 (mod 2wk+1)

with at least one variable from Fw0 nonzero. If our solution to this congru-279

ence is actually a solution modulo 2w0+τ+2, then this lifts to a 2-adic solution280
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by Hensel’s Lemma. If not, then we can contract the variables used in this281

solution to a variable y, with coefficient ay, at some level 2w0+k+l, where282

k + 1 ≤ k + l ≤ τ + 1. Now consider the form 2siFsi + · · · + 2si+τFsi+τ .283

By Lemma 3.5, this form represents every multiple of 2si modulo 2si+τ+1. If284

we set y = 1, then since ay is divisible by 2si we can solve the congruence285

ay + 2siFsi + · · · + 2si+τFsi+τ ≡ 0 (mod 2si+τ+1). This yields a solution of286

the congruence F ≡ 0 (mod 2si+τ+1) which involves a nonzero variable at287

level w0. Since si + τ + 1 ≥ w0 + τ + 2, this lifts to a 2-adic solution by288

Hensel’s Lemma. We therefore see that if the numbers w0, . . . , wτ+1 are not289

consecutive, then the equation F = 0 has a nontrivial 2-adic solution.290

291

Hence we may assume that the numbers w0, . . . , wτ+1 are consecutive.292

Set St+1 = {w0, . . . , wτ+1}. We have already shown that this set satisfies293

properties 1-4 above. If we have mw0 + · · ·+mwτ+1 ≥ 2τ+2, then Lemma 3.5294

shows that we can solve the congruence295

2w0Fw0 + · · ·+ 2wτ+1Fwτ+1 ≡ 0 (mod 2w0+τ+2)

with at least one variable from Fw0 not equal to zero, and this lifts to a296

2-adic solution by Hensel’s Lemma. Therefore we may assume that mw0 +297

· · ·+mwτ+1 ≤ 2τ+2 − 1, which is the final desired property.298

299

Continuing, we may assume that we can find a total of q mutually disjoint300

sets S1, . . . , Sq of subscripts having the five listed properties, since otherwise301

the equation F = 0 would have a solution and we would be done. Hence302

there are exactly r subscripts j such that j 6∈ ∪Si. The forms Fj contain303

a total of at least 2r variables. Suppose that these forms are Fi0 , . . . , Fir−1 ,304

with 0 ≤ i0 < i1 < · · · < ir−1 ≤ d− 1. By Lemma 3.3, we may relabel these305

forms as Fw0 , . . . , Fwr−1 in such a way that306

1. the ordered r-tuple (w0, w1, . . . , wr−1) is a cyclic permutation of the307

r-tuple (i0, . . . , ir−1), and308

2. for each k with 1 ≤ k ≤ r, we have309

mw0 + · · ·+mwk−1
≥ k · 2r

r
.

(Note that this changes the meaning of the numbers ij and wj from above.)310

We now proceed as before. It is easy to see that we have mw0 ≥ 2 and311
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mw0 + · · ·+mwr−1 ≥ 2r. Thus Lemma 3.1 implies that312

mw0 + · · ·+mwk−1
≥ 2k for 1 ≤ k ≤ r.

Let k be the smallest number such that wk = w0 + k, but wk+1 6= w0 + k+ 1.313

Then wk + 1 is the smallest element of one of the sets Si, and we have314

wk + 1 = si for some i. (Again, if wk = d− 1, then by a change of variables315

we may consider S1 to be the set {d, . . . , d+ τ + 1} and s1 = d.) By Lemma316

3.5, we can solve the congruence317

2w0Fw0 + · · ·+ 2wkFwk ≡ 0 (mod 2wk+1)

with at least one variable from Fw0 nonzero. If our solution to this congru-318

ence is actually a solution modulo 2w0+τ+2, then it lifts to a 2-adic solution by319

Hensel’s Lemma. If not, then we can contract the variables used in this solu-320

tion to a variable y at some level 2w0+k+l, where k+1 ≤ k+l ≤ τ+1. Let ay be321

the coefficient of this variable. Now consider the form 2siFsi+· · ·+2si+τFsi+τ .322

By Lemma 3.5, this form represents every multiple of 2si modulo 2si+τ+1. If323

we set y = 1, then we can solve the congruence ay+2siFsi+· · ·+2si+τFsi+τ ≡ 0324

(mod 2si+τ+1). As before, this leads to a solution of F ≡ 0 (mod 2si+τ+1)325

which involves a nonzero variable at level w0, and this solution lifts to a 2-326

adic solution by Hensel’s Lemma. This completes the proof of Theorem 1.1.327

328
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